MS378 - Isogeometric Methods
Keywords: Advanced Numerical Formulations, geometrical pre/post-processing, Isogeometric Analysis
Isogeometric Analysis (IGA) has been originally introduced and developed by T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs, in 2005, to generalize and improve finite element analysis in the area of geometry modeling and representation. However, in the course of IGA development, it was found that isogeometric methods not only improve the geometry modeling within analysis, but also appear to be preferable to standard finite elements in many applications on the basis of per-degree-of-freedom accuracy. Non-Uniform Rational B-Splines (NURBS) were used as a first basis function technology within IGA. Nowadays, a well-established mathematical theory and successful applications to solid, fluid, and multiphysics problems render NURBS functions a genuine analysis technology, paving the way for the application of IGA to solve a number of problems of academic and industrial interest. Further fundamental topics of research within IGA include the analysis of trimmed NURBS, as well as the development, analysis, and testing of flexible local refinement technologies based, e.g., on T-Splines, hierarchical B-Splines, or locally refined splines, in the framework of unstructured multipatch parameterizations. We also welcome IGA methods that is combined with data-driven methods (AI and machine learning).
